

FACTORY AUTOMATION Automated Guided Vehicle

TATA ELXSI

Design of Automated Guided Vehicle

CASE STUDY

Challenge

- To design & develop an AGV which best suits to flexible & scalable business needs.
- To deliver the final prototype in a short timeline of 5months.

Scope

- To design and develop a compact and powerful AGV which moves front & back, turn & pivot and pulls around 150kgs.
- Docking & locking of trolley
- Other sensing bump, proximity, crash etc.

ROS UI Application

Ubuntu GUI Application Framework

ROS KINETIC

IMU node	Stereo Cam node	Motor node	Urg node	Camera node
-------------	-----------------------	---------------	-------------	----------------

Peta Linux 2018.3 Kernel 4.14

ZCU104 + FPGA design						
IMU	Stereo Cam	Motor Cntrl	Lidar	Mono Cam		
WiFi	Battery Cntrl	Bump	LED	Actuator		

Solution

- A detailed research and benchmarking study was done to arrive at the desired specs for the design of the AGV
- A very flexible product was designed, which facilitates quick assembly and disassembly of panels, body split and fitment without using any fasteners.
- Optimized the space for better aesthetics

Impact

 The AGV helps to eliminate manual operations there by improving the efficiency and cost savings